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ABSTRACT

This report assesses a technique for automatic detection of hazardous divergence in
velocity fields estimated by an Airport Surveillance Radar (ASR).

We evaluate a least-squares approach to radial divergence estimation through a
performance analysis based on simulated data. That approach is compared to an existing
decision-based radial shear finding method used for the Terminal Doppler Weather Radar

* (TDWR).

Empirical results derived by the application of the two techniques to data collected
at ASR testbeds in Huntsville, Alabama and in Kansas City, Missouri are presented.

Results indicate that a simple, least-squares divergence estimator combined with time
association logic to increase temporal continuity of algorithm output is an equally effective
means of detecting divergent wind shear in velocity fields estimated from ASR signals.
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DIVERGENCE DETECTION IN WIND FIELDS ESTIMATED BY AN

AIRPORT SURVEILLANCE RADAR

I. INTRODUCTION

This report presents a divergence-based approach to microburst hazard detection in
single-Doppler radial velocity fields estimated by an Airport Surveillance Radar (ASR).

A. Background

A study based on two years of data collected at an ASR testbed in Huntsville. Alabama
demonstrated the potential effectiveness of vindshear detection with an ASR-9 modified
to produce weather radial velocity estimates as well as reflectivity estimates.* [Weber and
Noyes, 1985]. The Microburst Divergent Outflow Algorithm (MDOA) used in that study
was a slightly modified version of a technique developed by Merritt [19S71 for use with
a Terminal Doppler Weather Radar (TDWR). Application of the TDWR technique to ASR
wind estimates from Huntsville thunderstorms yielded excellent hit-miss performance sta-
tistics, meeting standards set by the FAA TDWR System Requirements Statement.

Despite good performance, the complexity of the TDWR-derived technique makes
difficult both decomposition and evaluation of its individual stages and optimization of its
parameter set. The research described in this report investigates replacement of the
decision-based. highly nonlinear technique with a simple gradient estimator combined with
a conventional image segmentation process. Furthermore, the divergence-field based
algorithm (DBA) exploits the radar's rapid 4.8 second rotation rate, and is relatively
insensitive to velocity estimate errors caused by the short time on target.

B. Scope

The goal of this report is to present and assess the different approach taken. To do
so, the TDWR algorithm is used as a "yardstick" for performance measurements.

Section H describes the radial divergence computation employed by the new algorithm,
and attempts to quantify the spatial accuracy of outputs from both algorithms at this stage
using a simulated data set. Section 1] provides a detailed description of the remaining
phases of the DBA. Empirical results obtained from the application of the algorithms
to selected Huntsville (1988) and Kansas City (1989) cases are presented in Section IV.
Section V then summari7es both the empirical and simulation results.

The simulation study of Section H employs a version of the MDOA adapted from TDWR
in 1987.** Appendix A provides an overview of the real-time ASR MDOA algorithm,
adapted from the TDWR algorithm in 1989 and used to produce the visual output and
statistics for Section IV [Newell, 1990].

* The signal processing strategy used to produce low altitude wind velocity estimates

from ASR high and low beam spectral data is described in [Weber, 19891.
** The TDWR MDOA algorithm described in Merritt [1987] has since undergone

changes. Results from the revised algorithm are described in Merritt et. al. 11989].



II. INITIAL RADIAL DIVERGENCE ESTIMATION

Initial divergence detection is perhaps the most crucial of all algorithm stages because
it is at that stage that the delineation of hazard area occurs or is forfeited. It may be possible
to correct for spatial overestimation or false alarming at this initial stage by Using grouping
criterion at later stages to filter isolated noise points or regions; however, underestimation
of hazard area and later abstraction away from the data level results in unrecoverable infor-
mation loss.

This section presents and evaluates the crucial first phase of pointwise radial divergence
detection of the divergence-based microburst detection algorithm (DBA) developed for the
ASR. The algorithm was previously discussed in [Weber and Noyes, 19891.

A. Method

1. Point Shear Identification

The first step of the DBA performs a least-squares linear fit about each range gate
along a velocity radial, where shear is the slope of the best fit line. The formula, which
is a simplification of the general case due to the equal spacing of data poiits in range.
may be written as

shear~ n _k V ) (-Ar~ishe r = i=-k,k -ii=-k,k

where k is the half-width of the fit window, vi is the velocity at point i. and Ar is the range
gate spacing.

Figure 2.1 shows the velocity field for one scan through a microburst near the ASR
testbed in Huntsville, Alabama on August 15, 1988. Also shown are divereence fields re-
sulting from the application of the least-squares operator with widths ranging from 3 gates
(360 m) to 11 gates (1320 m). The color table for the divergence fields was chosen in
order to display only positive shear estimates, with thresholds of 2.5, 5, and 10 x 10- m/s
/ m used to highlight degrees of hazard. Note the reduced noisiness and increased blurring
of the features achieved as the window size for the least-squares fit increases; the shear
images shown are otherwise unfiltered.

It is obvious that the least-squares or any similar computational technique will have
a noise resiliency versus spatial accuracy tradeoff. A least-squares filter which is too small,
while providing an accurate response to true signals, will be too sensitive to isolated noise
points; one which is too large, while filtering noise, may spatially under or overestimate
the hazard extent and may underestimate the hazard strength. Discussion of tradeoffs in
the selection of a least-squares fit window for the algorithm is a topic of this section.

The field of divergence estimates resulting from this last stage is subjected to a mini-
mum shear criterion by applying a sito-adaptable threshold. The threshold would typically
correspond to a windspeed loss of i0 m/s over 4 kin, or pointwise shear of 2.5 x 10 -3 m/s
/m.

2. Temporal Filtering of Point Shear Estimates

The ASR's rapid rotation rate of 4.8 seconds makes it plausible to apply time continuity
constraints to the thresholded least-squares divergence estimates. This is achieved by incre-
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menting either a positive or negative map at each range gate on successive scans, depending
on whether the divergence threshold was or was not exceeded. When a cell in the positive
map is incremented, the corresponding cell in the negative map is zeroed. The positive
map is input to the subsequent 2-D region finding operation, described in Section 111. The
PTSTART._THRESH parameter indicates the value in the positive map (or the number of
scans over which shear must have been seen at a point) required for it to be considered
part of a shear region. Conversely, the variable PTENDTHRESH indicates the value in
the negative map which will cause the corresponding positive map entry to b,. brought back
to 0, thereby excluding that cell from any shear region.

A simulation was performed to quantify the effects of the time logic employed by the
DBA to insure feature continuity, and results were used as a basis for selecting algorithm
parameters. The parameters chosen must 1) increase by coasting the probability of detec-
tion for features which are fairly prevalent, and 2) decrease the probability of detection
for features which are intermittent.

For each of 20 values corresponding to frequency of occurence sampled at 5 percent
intervals between 0 percent and 1 percent, 10,000 random numbers following a uniform
distribution were generated to correspond to values on 10,000 scans. To create the original
x percent frequency of occurence, then, it was determined if each number generated was
below or above the value x. If below x, the element was considered missing and a negative
indicator was incremented; if above x, a positive value was incremented, and the algorithr
time logic was applied. The graph of 2.2 shows the quantitative effect of the time smoothing
logic on feature probability of detection for different combinations of STARTTHRESH and
ENDTHRESH parameters. Figure 2.2 plots the original frequency of occurence against
the frequency after time smoothing for the parameters shown.

The settings PTSTARTTHRESH = 3, PTENDTHRESH = 2 were chosen to cause fea-
tures which exist less than 40 percent of the time to be suppressed, and to increase the
frequency of features occuring more than 40 percent of the time. The effectiveness of
these settings was independently verified through end-to-end testing of the algorithm. The
other curves are provided for comparison.

As an alternative to temporal point shear smoothing by the algorithm, we are also con-
sidering more aggressive time smoothing of the velocity estimates in the signal processor.

B. Evaluation

1. Performance Metrics

Here we evaluate "he least-squares approach to radial divergence detection by applica-
tion to simulated data. The simulated data set allows for control of the features of the
microburst (strength, size) and the characteristics of the velocity field (estimate variance)
which cannot be achieved with real data.

For the purposes of this study, radial divergence is modeled as the ascending (half
period) portion of a sine wave. The sine wave model has been acknowledged as a reason-
able approximation to the low-frequency components of a radial microburst profile [Elmore
et. al., 1989]. Noise exhibiting a Gaussian distribution is added to simulate the statistical
uncertainties in velocity estimates from fluctuating weather echoes. The signature is then
convolved with the same 5-point radial Gaussian filter used in the signal processor, which
reduces the output RMS noise level by a factor of 0.6.

4
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Figure 2.2: Effects of DBA time logic on frequency of features.

The resulting sienatures are characteristic of and have noise properties similar to those
generated by the ASR signal processor. Figure 2.3 shows a representative set of simulated
radial divergence signatures. The strength of the divergence being modeled is 20 m/s, ex-
tending over 2 km. The graphs show signature realizations for pre-smoothed velocity esti-
mate RMS errors ranging from 0 to 3 m/s. A variety of actual radial divergence signatures
are plotted in Figure 2.4 for comparison. (Note that the spatial scales for the actual signa-
tures differ, and that a higher resolution may cause them to appear more noisy when con-
trasted to the simulated cases.)

Parameters of amplitude (corresponding to the strength of the divergence), period (cor-
responding to its radial extent), and velocity estimate RMS error prior to smoothing are
varied in the performance analysis. 1500 trials are performed for each control group to
provide statistically reliable results.

The study measured both detection performance and false alarm performance. Algo-
rithm detection performance for a single scan was quantified using the percentage of radial
overlap of the estimated divergence with that portion of the sine wave exhibiting divergence
exceeding 2.5 x 10-3 m/s / m. At this threshold, divergence is considered operationally
hazardous to aircraft.

Note: The signal processing operation, which includes not only Gaussian smoothing
but also spatial median filtering, is discussed in [Weber, 19891.
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False alarm immunity was assessed by applying the algori:hms to a constant wind pro-
file with added Gaussian velocity errors. The probability of false alarm was computed
as the number of algorithm point shear declarations over the total number of points. In
the discussion of false alarm immunity, we further reference the graph of Figure 2.2 to
show how time smoothing may greatly reduce the false alarm probability of the least-
squares technique.

2. Performance Results

Figure 2.5 shows the relationship between percentage of length detected and velocity
standard deviation for the divergence-based algorithm using least-squares filter widths
ranging from 360 to 1320 m. For comparison, corresponding results from the radial diver-
gence detection phase of the MDOA are also shown. The distance of the hazard signature
was fixed at 4 km and the strength at 10 m/s, simulating a microburst of minimum severity.
The velocity estimate RMS error prior to Gaussian smoothing was varied from 0 to 3 m/s.

For all methods, the percentage of hazard length detected decreases with increase in
the velocity estimate error. For velocity errors less than roughly 1 m/s, the MDOA results
in a higher percentage detection than the least-squares filters shown, with the converse
applying at larger velocity errors. Coherent integration periods for TDWR have been set
so that the velocity estimate standard deviation is less than I m/s. For the ASR however.
estimate errors may sometimes be as large as 2 to 3 m/s, even after spatial filtering [Weber.
1989]. Thus, the divergence-based approach may be a more suitable match to the charac-
teristics of velocity fields estimated from ASR signals.

Figure 2.6 shows the percentage of length detected plotted against signature strength.
The velocity error was fixed at 3 m/s. For all methods, the percentage of hazard length
detected increases with increasing event strength, as we would expect. The MDOA falls
short of the least-squares estimators in percentage length detected, again due to the high
assumed velocity estimate error.

Figures 2.5 and 2.6 show that the performance of the divergence-based method in-
creases with the length of the window used for the least-squares slope estimate. We know.
however, that for a given signature (length, strength and RMS error combination) there
exists a filter size at which performance breaks down. To determine a reasonable least-
squares filter size to use in all cases, we need to find performance boundaries. One such
boundary was found by creating a signature corresponding to a microburst of minimum
plausible size, 1 km, and again examining the relationship between algorithm performance
and signature strength, shown in Figure 2.7. Again, velocity estimate error prior to smooth-
ing was fixed at 3 m/s. Performance increases with increase in filter s'ze up to 840 m;
performance drops by more than 10 percent at the 1080 m filter, and continues to drop
with increasing size as the window becomes too large in relation to the signature extent.

The results of Figure 2.7 indicate that a 840 m width window for the least squares
fit is the best choice filter size for smaller signatures. Figures 2.5 and 2.6 confirm that
its performance is good for larger microbursts.

We will now show that the 840 m window produces acceptable false alarm performance
by examining its noise-response when applied to a flat curve with added Gaussian noise.
The relationship between probability of false alarm, defined earlier, and velocity estimate
error is plotted in Figure 2.8. The MDOA exhibits less sensitivity to noise than the

10
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840 m filter and the other least-squares filters at this algorithm stage. This is largely due
to the Mv1DOA requirement that the radial signature length exceed .96 kin; a signature of
this magnitude is unlikely to be noise-induced.

Time continuity requirements combined with connectivity requirements applied at the
next stage of the least-squares algorithm achieve a similar low probability of false alarm
for the DBA. A "sufficiently low" pointwise probability of false alarm for the least-squares
technique is .3, the worst case shown for the 840 m filter size. Referring again to Figure
2.2 we see that a pointwise probability of false alarm of p = .3 maps to a .2 probability
after time continuity has been imposed. Now consider a 4-neighborhood in our shear field
where each pixel is "connected" in an 8-connected sense to every other. If we make the
simplifying assumption that the probability a g'iven point shear is false is independent of
that of an) other, then the probability P(r) that exactly r pixels out of the 4 are false is
given by the following formula:

pr)-- 4) p1' (l-p) 4- r

Using the above formula with p = .2 , the following probabilities for the 4-neighborhood
hold:

P(O)=.4096, P(1)= .4096, P(2)-.1536, P(3)=.0256, P(4)= .0016

The probability that 2 or fewer elements of the 4-neighborhood will be falsely detected
is greater than 97 percent, and the probability of 1 or none is greater than 80 percent.
Thus, it is extremely unlikely that connectivity requirements used in the region formation
process will produce a sizeable region out of the false registrations. The 840 m fit window
should therefore yield a low probability of false region declaration.

The simulation results contained in this section indicate that a least-squares divergence
estimator of appropriate width may perform as well or better than the pattern-based radial
shear finding method employed by the MDOA at delineating radial divergence signatures
in ASR data. The following section discusses the remaining steps of the DBA: 2-D shear
region identification and verification, temporal filtering of shear regions, and shape simpli-
fication.

13



III. DIVERGENCE-BASED MICROBURST DETECTION ALGORITHM

The previous section described the DBA's initial radial divergence estimation process
and the subsequent time smoothing of point shear estimates. This section describes the
remaining stages of the DBA, which are essential to accomplish a complete detection capa-
bility. These include 1) 2-D shear region identification; 2) shear region verification; 3)
temporal filtering of shear regions; and 4) shape simplification to derive a final output
product.

A. 2-D Shear Region Identification and Verification

The first two stages of the DBA produce a field of values indicating the number of
scans over which each cell has exhibited sufficient divergence. Proximate resolution cells
exhibiting temporally stable strong divergence -- that is, locations with values exceeding

PTSTARTTHRESH -- are grouped to form shear regions using an 8-connected region-
based segmentation algorithm. (Eight-connectedness says that each pixel is connected to
all its 8 neighbors, so that regions are grown diagonally as well as along radials and across
azimuths.)

The segmentation is in essence a directed boundary walk. The boundary list contains
pixels which surround a shear region, which are not region elements themselves. The basic
philosophy is to "walk" around the shear elements, keeping "non-shear" pixels to the left,
to mark off the hazard region.

The segmentation algorithm scans the image in increasing azimuth and increasing range
until a shear pixel is found. We are now on the edge of a region, and are initially oriented
towards decreasing azimuth as shown in 3.1 (a). The boundary walk is carried out using
motions which are combinations of movement and rotation. The following motion se-
quences are used: 1) move-rotate; 2) rotate-move; or 3) move, to the neighbors shown
in 3.1 (b). Rotation and translation cause the base coordinate system to be rotated and
translated. 3.1 (c) shows the action-causing patterns used to trace the boundary of a region.

The algorithm applies the following rules, which uniquely determine the set of 8-con-
nected regions for any possible set of image values:

1. If Pattern 1, Rotate Clockwise and Store Pixel on Left (N-,o)

2. If Pattern 2, Move to N-1 ,0 and Store Pixel on Left (N-I,- 1 )

3. If Pattern 3, Move to N_1,_ 1 and Rotate Counterclockwise

Note that a region may be sparse, as long as its outermost pixels are 8-connected.

The boundary walk for a given region ends up where it started. The algorithm continues
the search for the next shear region from the first encountered pixel of the last region,
skipping sections of the image which have already been traversed.

This technique accomplishes the dual goals of 1) grouping homogeneous elements (ad-
jacent shear pixels) into regions and 2) filling in internal holes by ignoring non-boundary
enclosed pixels. Conventional multi-pass raster scan techniques combined with simple
post-processing logic could be used to provide the same results. The "walk" method was

15



used instead because of the small amount of storage required to carry out the segmentation;
however, the extra swapping required to traverse the image in a non-raster fashion may
cause slowdowns.

For a survey of alternative 8-connected region-based image segmentation methods,
see [Rosenfeld and Kak, 19761.

N5757 8

N1, 1  N.,0 N.1,1

N N
. ... Ny.1

N1 1  N 1,0  N11

(a) INITIAL ORIENTATION (b) 8-NEIGHBOR
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LEGEND

NOT A SHEAR PIXEL,MM~IGNORE VALUE
SHEAR PIXEL

PATTERN 1 PATTERN 2 PATTERN 3 { CENTER PIXEL

(c) ACTION-CAUSING PATTERNS

Figure 3.1: Region growing method employed by the DBA.

Would-be regions are filtered using a fixed microburst area threshold. Regions smaller
than a user-specified size (RG SIZETHRESH) are eliminated. The size parameter is meant
to reduce anomalies and retain true microburst regions. Other shape properties (such as
eccentricity) could be computed in the region growing process to be used for later fast
filtering.

A windspeed loss threshold LOSSTHRESH is applied to each region. Currently, the
loss across a region is computed to be the maximum of the velocity difference across any
radial cutting through the region. The threshold is user-specified but is intended to be
a lower bound on the windspeed loss that is considered hazardous to aircraft. generally
10 or 15 m/s.
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Like the thresholding of point shear estimates, loss thresholding on regions helps to
eliminate weak (non-hazardous) divergences. Note that regions surpassing this phase of
the algorithm both exhibit a substantial loss and are comprised of points which meet a
minimum shear criterion.

B. Temporal Filtering of Shear Regions

Logic identical to that used to insure point shear continuity is used to stabilize alarms
generated by the algorithm. Without any such logic, borderline regions falling above and
below the fixed size and strength thresholds would cause the algorithm to generate
inconsistent, intermittent alarms.

The RGSTARTTHRESH parameter specifies the age of a region required for it to be
issued as a microburst alarm. A region is determined to match the oldest repion on the
previous scan which it overlaps. A region which is missing is carried over, or "coasted,"
until it is missing for RGENDTHRESH consecutive scans, at which point it is eliminated.

Figures 3.2 and 3.3 show four consecutive scans collected at the Kansas City FL-3
testbed on May 15, 1989. Figure 3.2 shows the output from the DBA algorithm applied
without inclusion of temporal continuity logic. Figure 3.3 then shows DBA output using
time parameters PTSTARTTHRESH, PTENDTHRESH, RGSTARTTHRESH, and
RGENDTHRESH set to the values indicated in Section D. The fluctuation in the number
and spatial extent of the alarms evident in 3.2 was eliminated by the time correlation logic
employed by the algorithm to generate the output of 3.3. In particular, Figure 3.2 exhibits
the following:

1. There are six alarms within 15 km in panel a) of Figure 3.2, six in
panel b), six in panel c) and five in panel d).

2. The alarms in the southeast quadrant, while of significant size (greater
than 2 km 2), exhibit little temporal continuity. Three distinct regions
of shear are evident in the four scans, while a maximum of two and
a minimum of 1 are detected on any one scan.

3. The alarms to the west and southwest of the radar, in the sweep from
195 to 300 degrees, are fairly consistent.

In Figure 3.3, the sporadic alarms of Figure 3.2 were eliminated, leaving three
temporally and spatially consistent alarms to the west and southwest.
C. Shape Simplification

The border of the hazard region is an arbitrary polygon, often with a complicated
shape. To simplify interpretation the minimum bounding convex polygon (two dimensional
convex hull) of the hazard region is computed as the final output product. The following
steps are used to generate the convex hull:

1. Find a point on the convex hull (in our case the first point in the bound-
ary list). Make this the seed point, and add it to the list of hull points.

2. Select a candidate point. For simplicity, we choose the point following
the seed point in the boundary list.
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3. Compute the equation of the line between the seed point and candidate
point.

4. Determine if all successive boundary points fall to one side of the line.
If yes, make the candidate the new seed, add it to the list of hull points,
and go to 2. If no, select a new candidate (the point following the
current candidate) and go to 3.

Figure 3.4 shows a shear region found by the DBA overlaid on a radial velocity field
estimated by our experimental ASR. The black outline shows the region of strong diver-
gence and the simpler red shape its associated convex hull. The, outlines bound the area
where an airplane would experience significant headwind loss (insofar as the hazard region
can be determined from single-doppler data.)

D. Algorithm Parameters

The following definitions are provided for the algorithm parameters, with example set-
tings in brackets.

LSQ_WIN_SIZE [71: The number of gates (each gate spanning 120 meters) for the least-
squares linear fit.

DIVTHRESH 12.5 x 10- /s ] : The value used to threshold the field of least-squares diver-
gence estimates.

PTENDTHRESH 121: If shear at a location does not execed DIVTHRESH for
PTENDTHRESH consecutive scans, its positive map value is set to 0, eliminating its
consideration as a shear region element.

PTSTARTTHRESH [3]: A threshold on the positive map, or number of scans over which
sufficient shear must have been seen at a point for it to become part of a shear region.

RGSIZETHRESH [1.0 km 2]: The minimum area required of a shear region.

LOSSTHRESH [10 m/s]: The minimum windspeed loss required across a shear region.

RGENDTHRESH [2]: If an alarm has dropped out for RGENDTHRESH consecutive
scans, it is eliminated. Otherwise, it is "coasted."

RGSTARTTHRESH [2]: The scan age of a region required for it to be issued as a micro-
burst alarm.

The following section presents additional case studies of algorithm performance on
real data.
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IV. EMPIRICAL RESULTS

This section presents algorithm results for data collected during our 1988 field experi-
ment in Huntsville, Alabama and during our 1989 experiment in Kansas City, Missouri.
A representative set of divergence signatures which occured within 16 km of the ASR have
been chosen. Color pictures and algorithm performance statistics have been included.

A. Case Studies

For the cases presented below, final output declarations (hollow geometric shapes)
from both the DBA and the ASR Real-Time MDOA algorithms are shown superimposed
on the corresponding ASR velocity product.

The output of the ASR DBA is the minimum bounding convex polygon. or convex hull.
surrounding the 8-connected elements of a divergence region (refer to Section Ill.
Divergence-Based Microburst Detection Algorithm).

The ASR Real-Time MDOA output is shown as the convex hull for the radial shear
segments associated with a microburst alarm. In the current TDWR operational system,
the final output is depicted as a bandaid. The bancdaid shape fitting algorithm is described
in Wilson et. al 11989].

The spatial extent of regions detected by both algorithms in most cases is similar. but
not in general coincident. The DBA detects loss regions comprised of point elements con-
taining significant divergence, while the NIDOA first detects loss regions comprised of
monotonicallv increasing velocity segments, and then "crops" these segments using shear
criteria. Radial and azimuthal extents may differ because of this basic difference in design
philosophies between the two algorithms.

MDOA segments currently must meet a minimum radial length requirement of .96 km.
while the DBA has no such criterion. In some cases, this causes the DBA alarms to have
a larger azimuthal extent.

The two cases below, one from Huntsville in 1988 and the second from Kansas City
in 1989, emphasize the similarity in the performance of the two algorithms.

1. 18 June 1988

On June 18, 1988 a divergence region formed 15 km south of the radar at 19:51 GMT.
The divergence reached a peak strength of AVR = 32 m/s at approximately 19:55. Figure
4.1 shows 4 scans taken at 30 second intervals around the time cf peak shear. The black
outlines correspond to superimposed DBA output, and white io that of the MDOA.

This case was chosen as a fairly simple first example. The radial extent of the alarms
from each of the algorithms is roughly identical. Alarms from the DBA are wider azimuthal-
ly. Figure 4.2 sheds light on the difference in shape. Panel (a) shows the dual-beam
velocity product at 19:53:18 with algorithm outputs overlaid. Again, black outlines repre-
sent DBA alarms, and white MIDOA alarms. Panel (b) shows the intermediate "positive
map" product input to the algorithm's region growing process. The color map of (b) was
chosen to display, in red, points at which the algorithm has determined sufficient shear
to exist. The DBA shape encloses the long arm of shear which extends south of the more
symmetric region above. The MDOA would throw this arm, comprised of only a few gates,
away. The DBA treats it as significant because it is connected to the larger region.
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2. 23 July 1989 - 00:21 to 00:43

Late afternoon thunderstorms in the Kansas City area produced two long-lived diver-
gences within 20 km of FL-3 during the time period, both reaching a peak strength of 20
m/s. Figure 4.3 shows algorithm alarms superimposed on the dual beam velocity product
for 4 scans sampled at roughly 3 minute intervals in the middle of the activity. This case
also exhibits the similarity in algorithm performance. For the I.,o divergence signatures
observed on the scans shown, the DBA output (depicted in black) and the MDOA output
(depicted in white) are roughly coincident. Note that the microburst to the south of the
radar (180 degrees, 6 kin) was detected by the DBA slightly earlier.
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B. Automated Scoring

1. Scoring Methodology

Reflectivity and velocity images from the ASR were examined by a trained meteorolo-
gist to determine the existence of a divergence signature, its strength, and its spatial extent.
These polygonal "truth" events were entered into a computer database for access by an
automated scoring process. Because this report focusses solely on algorithm performance
assessment and not on radar velocity estimate accuracy the ASR is used for truth instead
of the colocated pencil beam radar used in earlier studies [Weber and Noyes. 19881. Thus,
missed detections or false alarms caused by errors in velocity field estimates are not re-
flected in these statistics.

The automated scoring process reads the truth datab" -e and algorithm archive database
to compute the overlap between truth and algorithm output. The specific scoring rules
used are as follows:

1. If the area of a truth event is overlapped by the union of algorithm
alarms, that truth event is considered a hit.

2. If the area of an algorithm alarm is not overlapped by the union of
truth events, that alarm is considered false.

Note that this scoring methodology is more stringent than that used in [Weber and
Noyes, 1988, 19891 which was based on previous procedures employed by the TDWR
groups at Lincoln Laboratory and the National Center for Atmospheric Research (NCAR).
These had merely required 2 km proximity, and allowed for "early" or "late" algorithm
alarms.

The performance metrics tabulated below are:

Detection Probability (POD) - the number of detected divergence signa-
tures divided by the total number of divergence signatures

False Alarm Probability (PFA) - the number of algorithm alarms not
associated with valid divergence signatures divided by the total number
of alarms

2. Scoring Results

The table below presents detection statistics for divergence signatures centered within
a 16 km range of the ASR. 4 days from Huntsville, Alabama in 1988 and 2 days from
Kansas City, Missouri in 1989 are included, encompassing a total of more than 1000 scans,
100 minutes and 25 events. The following time periods are included in the scoring statistics:

1. 18 June 1988 - 19:51 to 20:02

2. 21 June 1988 - 19:46 to 20:14
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3. 24 June 1988 - 21:18 to 21:27

4. 4 August 1988 - 00:15 to 00:27

5. 24 June 1989 - 20:55 to 21:14

6. 23 July 1989 - 00:21 to 00:43

The following statistics should be viewed as rough estimates of algorithm performance.
The subjectiveness and impreciseness of meteorological truth is likely to cause small quanti-
tative errors in the calculation of statistics. Attributes of area and severity which are sub-
jected to strict minimum requirements by the algorithms are not measured precisely with
the human eye. In addition, shears embedded in the environmental flow which do not
exhibit a clearly visible negative-positive velocity couplet may be missed by the human
expert. While these embedded shear phenomena may be microburst hazards, they may
also be artifacts caused by a vertically sheared environment.

Table 4.1: Divergence Signature Detection Performance as a Function of
Outflow Strength

AVR > 15 m/s AVR > 20 m/s -AVR > 25 m/s

Divergence-Based POD .98 .99 1.00
Algorithm PFA .08 .06 .01

ASR Real-Time POD .98 1.00 .99
Microburst Divergent PFA .08 .03 .01
Outflow Algorithm

The two algorithms exhibit roughly equivalent detection performance overall, with mi-
nor differences on individual cases. The slightly higher occurrence of DBA false alarms
results from the DBA's detection of a long-lived radar-generated false alarm on June 24,
1989.
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V. SUMMARY

This report has described and evaluated a divergence-based microburst detection algo-
rithm developed for the ASR. This technique was developed as a research tool to investigate
alternatives to the TDWR microburst algorithm initially adopted for the ASR. Roughly
equivalent performance was derived from application of the two techniques to data collected
during isolated air mass thunderstorms at our testbeds in Huntsville, Alabama and Kansas
City, Missouri.

The following discussion highlights the significant differences in approach between the
two algorithms, referring to the analysis contained in previous sections to analyze their
effectiveness.

The first stage of the DBA computes radial divergence at a point by pcrforming a least
squares linear fit to the elements in the surrounding radial window. Section II showed that
such an approach does indeed contain performance tradeoffs in noise resiliency versus spa-
tial accuracy. A too-small window may accurately respond to true signals but improperly
key on isolated noise points, and a too-large window may reduce the effects of velocity
noise, but spatially under- or overestimate the hazard extent. We were able to show that
a fixed least-squares window size can be found which exhibits reasonable performance
over the entire ,range of radial divergence signatures expected for real microbursts.

The DBA's linear least-squares fit approach to computing pointwise radial divergence
has a closed-form mathematical representation. The one variable which can effect the
outcome of the process on a given data set is the size of the estimation window. In contrast,
the segment growing process of the MDOA is a nonlinear multi-decision-based process,
making an analytic description of its behavior difficult. We view the simplicity of the low-
level shear finding portion of the DBA as a great strength.

The DBA applies time continuity constraints to individual point shear elements. This
approach takes advantage of the ASR's rapid rotation rate of 4.8 seconds, and was the
basis for the logic described by Newell [19901 which time smooths the segments found
by the ASR Real-Time MDOA.

The DBA groups elements of the "time indicator" field output by the first two stages
of the algorithm into two-dimensional 8-connected shear regions. The MDOA algorithms,
on the other hand, first grow one-dimensional radial regions, or segments, and then associ-
ates these azimutha!ly. The DBA approach finds divergence estimates and grows regions
in two separate stages. The MDOA algorithms identify divergence points and grow radial
segments simultaneously, making it more difficult to evaluate each process. The interde-
pendency of algorithm stages makes the empirical determination of an optimal parameter
set for the MDOA difficult.

Based on the above observations, we can make the following statements:

1. analysis to date indicates cumulative performance is the same for both
methods on the cases evaluated thus far.
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2. the DBA approach shows strength-in-simplicity. It steps are very com-
partmentalized, and the shear finding computation has a simple math-
ematical representation. By contrast, the MDOA's shear finding pro-
cess is interwoven with the radial region growing process, and is
decision-based and highly nonlinear.

3. the DBA computes shear and requires substantive shear at each point
for it to become part of a two-dimensional hazard region. The MDOA
algorithms first detect one-dimensional loss regions comprised of
monotonically increasing velocity segments, and then "crop" these
segments using shear criteria. These segments are then grouped into
two-dimensional regions. Both the DBA and MDOA algorithms im-
pose a windspeed loss threshold.

4. simulation analysis indicated that a least squares fit window size exists
for which the radial divergence estimation phase of the DBA exhibits
acceptable "percentage length detected" performance over all reason-
able microburst scales and velocity error assumptions; the same analy-
sis showed that the MDOA performs less well for extreme-noise con-
ditions.

5. simulation analysis indicated that, when applied to a constant radial
wind profile with added Gaussian noise, the least-squares operator
generates a greater number of false detections at individual range
gates than the MIDOA algorithm. However, these false detections are
reduced considerably by the DBA's subsequent time smoothing and
region filtering operations.

6. the DBA takes advantage of the ASR's rapid update rate by applying
time continuity constraints to pointwise shear estimates. The ASR im-
plementation of the MDOA applies similar logic to shear segments.

The processing requirements of the divergence-based algorithm exceed those of the
ASR real-time MDOA. The DBA takes on averaze 10 seconds and a maximum of 30
seconds to process a single scan on a Sun 3/80 Workstation. The MIDOA matches the 4.8
second scan rate of the ASR when run on the Mizar 68030 single-board computer, a CPU
with roughly equivalent performance as the Sun 3/80. To adapt the DBA for real-time,
we have two alternatives: 1) re-implement the DBA, concentrating on code optimization
and "shortcuts"; and 2) run the DBA on a faster architecture.

The DBA will be implemented in real-time and will serve as the basis for an ASR wind
shear processor specification if continued analysis is favorable.
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APPENDIX A: BRIEF OVERVIEW OF THE REAL-TIME ASR MICROBURST
DIVERGENT OUTFLOW ALGORITHM

Sections 11 and IV of this report use the Microburst Divergent Outflow Algorithm
(MDOA) as a yardstick to evaluate the performance of the divergence-based algorithm
(DBA). The simulation study of Section 11 employs a version of the MDOA adapted from
TDWR in 1987.* A further adaptation for real-time ASR use, which generated the results
in Section IV of this report, was made by Newell [1990]. The segment detection phase
of that algorithm is described below.

The first phase of the ASR Real-Time MDOA slides out along a radial to search for
a sequence of monotonically increasing velocities, or a "segment", like that shown in A.1
The segment search and validation are comprised of several phases:

BEGIN SEGMENT

I. Search for a velocity increase on two adjacent gates which is smaller
than MAX_FIRST INCREASE (5.0 m/s). This is the segment start.

As the algorithm proceeds from gate to gate along the segment, a vari-
able called sumdecreases is used to keep track of the sum of gate to gate
velocity decreases.

2. At the beginning of each segment. initialize the value of sum decreases
to INITSUMDECRI. ISES (-2.0 m/s). This has the effect of reducing
the tolerance fo" 1 :reasing trends that occur early in the segment.

GROW SEGN'W UNTIL TERMINATION CONDITIONS (3 or 4)
ARE MET

3. Terrrnate the segment if more than MAX_BADVALS (2) are encoun-
tered.

4. rerminate the segment if the sum of decreases since the most recent
maximum value is greater than MAXSUMDECREASES (-5.0 m/s).

5 and 6 describe the rules used to modify the value of sumdecreases.

5. When a velocity increase is found, increment the value ofsumdecreases
by CONSTANTINCREASE (1 m/s), or set it to 0.0 when it exceeds 0.0.
The reason to increase it by a constant instead of the actual value of the
velocity increase is to weigh the decreasing trends more heavily in re-
gions where the velocity field is oscillating up and down. This tends to
terminate the growth phase of noisy segments with greater efficiency.

6. When a velocity decrease is found, the actual value of the decrease is
added to sum-decreases.

Note that the TDWR MDOA algorithm described in Merritt 119871 has since under-
gone changes. Results from the revised algorithm are described in Merritt et al.
119891.
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PERFORM SEGMENT VALIDATION.

7. The length of the segment must be greater than or equal to
MINSEGLENGTH (.96 km).

8. Segments must exhibit a differential velocity greater than or equal to
MINSEG_DIFF (8.0 m/s).

9. The shear slope at each point in the segment must exceed
MINSECSLOPE (1.8 m/s / kin). The slope at each point is calculated
using both an 11-point and a 7-point window (centered at the test
point), except near the beginning and end of a segment, where a shorter
single window (3, 5, 7 or 9) is used to avoid overlapping the endpoints.
If the slope at any point is less than the threshold, the segment is split
at that point. Any segment that is split must pass through steps 7, 8 and
9 again.

Later algorithm stages perform segment temporal smoothing, group range-overlapping
segments on neighboring radials into candidate hazard regions, and perform spatial and
time filtering on those.

The final output of the ASR Real-Time MDOA is a database archive file containing
microburst alarms with geometric, strength and time properties.
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